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The problem of determining the coefficients for a linear feedback
guidance system with polynomial gains is investigated. The solution to
the linearized equations of motion is employed to determine the first
partial derivatives of the optimum thrust angle deviatioms with respect
to position and velocity coordinates. The partial derivatives are
approximated by quadratic time functioms, which in turn are the first
approximation to a time-variable set of gains. This system is then
analyzed, and two of the weighting functions are linearized with respect
to perturbations in the polynomial coefficients. Changes in these coef-
ficients are determined to minimize the weighted sum of squares of these
expressions over several time points. The resulting changes were made,
and a satisfactory reduction in magnitude of these weighting functions
resulted. This, coupled with a linear feedback of thrust acceleration
and a small time function derived to cancel the effect of initial con-
ditions, produced the final guidance function which performed exception~-
ally well on a 100 n.m. orbital mission of an early SA-6 second stage
vehicle. Of particular interest is a demonstration of the effectiveness
of the numerical methods used which are generally applicable to a wide
variety of guidance and control feedback problems.
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DEFINITION OF SYMBOLS (Continued)

Definition

[pi(t) pa(t)]

a 2 x 4 matrix derived from approximating cutoff
deviations by a linear transformation on the devia-
tions at standard cutoff time, tp, so that

MR = TAX(t,)

;; [0 o % 3y,
u; (t)
TU(t,, t) =
us(t)

a 1 x 4 matrix such that At = Ug(t) AX(L)
a 1 x 4 matrix such that Ar = U;(t) AX(t)
a 1 x 4 matrix such that A5 = Ux(t) AX(t)

solution to the matrix differential equation

U(t,tp) = A(t) U(t,tg), U(tg,to) = I

solution to the matrix differential equation

é(t,to) = A(t) U(t,to), U(tg,tg) = I

propellant flow rate
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DEFINITION OF SYMBOLS (Continued)
Definition

d. + /d.

i i

quadratic function of time representing the time
variable gain for f/m

coefficient of the ith ordered term of e(t)

thrust force
thrust acceleration
defined by equation (2.5)

the top element of the vector TU(t,,t) Hi(t)

the top element of the vector Tﬁ(tn,t) Hi(t)

the top element of the vector T[U(tp,t) + N (ty,t)] Hi(t)
linear approximation to go

defined by equation (2.6)

the bottom element of the vector TU(tp,t) Hi(t)
the bottom element of the vector Tﬁ(tn,t) Hy (t).

the bottom element of the vector T[ﬁ(tn,t) + AU(t,,t)] H;(t)

linear approximation to g,

defined in equation (2.4)

T,
- EI%; U(t,,t) Hi(t)
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DEFINITION OF SYMBOLS (Continued)
polynomial of time defined by equation (5.13)

coefficient of the ith degree term in k(t)

k(t) + 2k(t)
k, + 2k,
i i

£y

100(hs + Arfs + Asgo)

8,

h2 + 7\1f2 + 3\2g2

magnitude of the radius vector measured from the
center of the earth

a subscript denoting that the function is evaluated on
the standard trajectory

time

second stage ignition time

cutoff time on the standard trajectory

cutoff time on any trajectory

velocity

velocity at standard cutoff time

Cartesian coordinates with origin at the center of
the earth %X, ¥, X and ¥ represent their first and
second time derivatives

x-component of gravitational acceleration

y-component of gravitational acceleration
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DEFINITION OF SYMBOLS (Continued)
Definition

H,B

[ta(t) () oe(t) ad()]

Tm(tn, t) Ho(t)
TAI(tn,t) Hy(t)

defined in equation (5.10)

matrix used to determine Nk; such that

solution to the matrix differential equation

AU(t,ty) = A(t) AU(E,t1), AU(ty,t;) = O

the weight of propellant required for a given example
minus the propellant that would have been required for
the same example to reach the nominal end condition
requirements

X(t) - Xg(t), t measured from second stage ignition on
each trajectory

Mg + La;T + fayte
ﬂ)o + ﬂ)lT + &21‘2

Do + DT + Aot
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M, Ny

Ml} A7\2

DEFINITION OF SYMBOLS (Continued)
Definition

Mo + Ale + M2T2

changes in the polynomial gain coefficients chosen to
minimize the magnitude of the elements of ?o

K(t) AX(ty)
polynomial approximation to Ak(t)

coefficient of the ith degree term of Aﬁ(t)

deviation of radius vector at cutoff

additional burning time required beyond that required
for the standard trajectory

deviations in position coordinates compared at equal
time from second stage ignition

time derivatives of /Ax and 4y

changes in the value of the Lagrange multipliers
required to meet the end conditions with a non-

standard trajectory

deviation of thrust angle from its standard value com-
pared at equal times from second stage ignition
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Definition

Aho
2

IS

actual thrust angle minus the value predicted by the
guidance function

angle of the velocity vector measured from local
vertical

Lagrange multipliers required to fulfill the con-
straint that h; + A f; + Ag; = 0

values of A; and A, for the standard trajectory



TECHNICAL MEMORANDUM X-53362

LINEAR FEEDBACK GUIDANCE

SUMMARY

The problem of determining the coefficients for a linear feedback
guidance system with polynomial gains is investigated. The solutiomn to
the linearized equations of motion is employed to determine the first
partial derivatives of the optimum thrust angle deviatiomns with respect
to position and velocity coordinates. The partial derivatives are
approximated by quadratic time functions, which in turn are the first
approximation to a time-variable set of gains. This system is then
analyzed!| and two of the weighting functions are linearized with respect
to perturbations in the polynomial coefficients. Changes in these coef-
ficients are determined to minimize the weighted sum of squares of these
expressions over several time points. The resulting changes were made,
and a satisfactory reduction in magnitude of these weighting functions
resulted. This, coupled with a linear feedback of thrust acceleration
and a small time function derived to cancel the effect of initial con-
ditions, produced the final guidance function which performed exception-
ally well on a 100 n.m. orbital mission of an early SA-6 second stage
vehicle. Of particular interest is a demonstration of the effectiveness
of the numerical methods used which are generally applicable to a wide
variety of guidance and control feedback problems.

INTRODUCTION

The problem of determining a closed loop guidance function with
linear, time-variable feedback is investigated by studying the behavior
of the equations of motion in the neighborhood of a standard calculus of
variations solution. The linearized Euler-Lagrange equations are used
to determine a good approximation to the optimum thrust angle deviation,
AX. The solution gives AX as a linear combination of known functions of
time. The particular linear combination required is that one which ful-
fills the desired end conditions. The linearly predicted deviations of
the end conditions, as a function of deviations in initial conditions,
are used to determine the first partial derivatives of the optimum thrust
angle with respect to position and velocity components. Quadratic time
approximations to these partial derivatives provide the time-variable
gains for a linear feedback system which is analyzed by the same methods
employed in the open loop analysis described in Reference 1. To reduce
the effect that thrust acceleration variations would have on this system,



the weighting functions involved are linearized with respect to changes
in the coefficients of the gain polynomials. Changes in these coeffi-
cients are determined to minimize the weighted sum of squares of the
resulting expressions over a number of time points. Although this is
only one step of an iterative procedure, the reduction in magnitude of
the weighting functions from this one iteration is sufficient to demon=-
strate the effectiveness of the method. What little effect of thrust
acceleration deviations is left is further reduced by the addition of
thrust acceleration feedback with gains which are also quadratic time
functions. A polynomial of time, whose coefficients are determined as
linear functions of initial conditions, effectively cancels the remaining
error due to initial conditions. The resulting guidance function has been
determined for an early SA-6 second stage vehicle designed for a 100 n.m.
circular orbit. The tabulated results for a number of examples reflect
the effectiveness with which linear analysis can be applied to problems
of this type.

I. LINEARIZED EULER-LAGRANGE EQUATIONS

An explicit solution to the linearized equations of motion was
determined in Reference 1. The deviations in end conditions, Ar and A9,
and the additional burning time, At, were determined as functions of
deviations in initial conditions, AX,, variations in thrust angle, AX,
and variations in thrust acceleration, Af/m. These terminal deviations
were found to be adequately represented by the following expressions:

th

At =U, (t,) AX(t,) + f h(AX, Af/m, t) dt, (1.1)

to

tn

A = Uy (ty) AX(ty) + f £(AX, Af/m, t) dt, (1.2)

to

th

UZ(to) AX(to) + f g(AX’ Af/m’ t) dt’ (1'3)

t

A8




where

h(AX, Af/m, t) = hy Af/m + <} +'é§§E (hy &X + h, A + ...), (1.4)

f(&X, Af/m, t) = f, Af/m+<1 +Af?j:i (f2 AX + £, AXE + ..0), (1.5)
Af/m o

g(AX, Af/m, t) = o Af/m + <1 + 7 (81 X + g &X= + ...), (1.6)

Using the Euler-Lagrange equation to minimize At under the constraint
that Ar and A8 have specified values leads to the following necessary
condition:

Af /m .
[1 + —E7;} [(hl + Mfp + Nogy) F2(hs + Mfs + Nogs) AX + ...] = 0.

(1.7)

For the standard calculus of variations solution, this means that
hy + Mfy + Mogy = 0. (1.8)
To simplify further analysis, the following definitions are employed

=N t+AN

2
[

. (1.9)

S
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+
s




Substitution of these expressions into equation (1.7), neglecting terms
higher than first order and taking cognizance of the relationship
defined in equation (1.8), results in the following:

£1A0; + g180s + 2(hs + Mfo + Asgn) AX = O. (1.10)

For convenience, the following quantities are defined:

-fq
P1 = - -

100(h2 + ?\lfg + 7\2g2)
Po = --gl —

(ho + Afo + Asgo)

1
Q= —%—1- .11)
_ D2

B=5

With these definitions, it can be readily verified that the follow-
ing expression for AX satisfies equation (1.10):

MX = PAL (1.12)

Any linear combination of the functions p, and p- will satisfy,
to first order, the Euler-Lagrange equation. The functions p; and ps
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are illustrated in Figure 1,1, These particular functions can be well
represented by the following quadratic functions of time:

py = 5.8096 + 17347 - .294812
(1.13)
po = -6.5992 - 3,26367 + .10007=
where
t -t
= [o]
T 100 °

It was shown in Reference 1 that for this same mission the value
of X on the standard trajectory could be adequately represented by a
quadratic in time. Thus, for this example, X can be well represented
as a quadratic time function with two arbitrary parameters, O and f.
If @ and B can be determined in any way so that Ar = A8 = 0, the result-
ing guidance function will satisfy the Euler-Lagrange equation to first
order.

In actual practice, a single pair of constants, ¢ and (3, to be
used throughout the trajectory cannot be determined because of the
future uncertainties in the thrust vector. However, if their best
approximation is available, a good quadratic approximation to the
optimum X is available until such time as later information provides
better values for ¢ and B. As the time intervals between corrections
in o and Bbecome smaller, ¢ and B become continuous; AX then becomes a
time variable function of the current state of the system,




II. FIRST PARTIAL DERIVATIVES

In order to attain a first approximation to a linear feedback sys-
tem, equations (1.2) and (1.3) will be linearized with respect to AX,
and all other terms will be considered zero except the initial condi-
tions, AX,. Then equation (1.12) can be used to determine the linear
effect of AX, on the optimum value of AX. To simplify subsequent deriva-
tions, the following definitions will be used:

-
MR = (2.1)
-—Ae—
o
F, = 1, i=0,1,2, ... (2.2)
81
tn
M(ty) = f F4 P dt (2.3)
t
[o]
uy(ty)
u(ty) = . (2.4)
Uz(to)

Considering only the effects of AX, and the linear effect of AX,
equations (1.2) and (1.3) can be written in the following matrix form:

ta
MR = U(ty) AX(t,) + f Fy OX dt. (2.5)

t



Substituting the expression for AX obtained in equation (1.12) and using
the definition of equation (2.3) yields the following expression:

MR = U(ty) OX(to) + M(tgy) A. (2.6)

Setting AR = 0 and solving for A gives

A= -M’l(to) Hty) AX (ty). 2.7)

The expression for AX at t = t, then becomes

DX(ty) = =P(to) M 1(ty) U(ty) AX(ty).

The uniqueness of an existing series expansion ensures that

a_é_]
3% O by

and since the derivation is independent of the particular value of t,,
the following expression is obtained for the first partial derivatives:

~P(to) M1 (t,) U(ty) = [%—

%’IO’

[ax X dX X

B; E & g} = -P(t) M-l(t) u(t). (2.8)

A polynomial fit of these partial derivatives will be used as a first
approximation to the desired linear feedback system. Subsequent analysis
will determine the acceptability of this system, and methods of improving
its performance will be outlined and applied. Figures 2.1 and 2.2 show
the values obtained for the first partial derivatives from equation (2.8)

where they are compared with their quadratic approximations defined by
the following functions:

ED.
PRECEDING PAGE BLANK NOT FILM
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o an

a(t) =ay + a1 + apt ~ e
b(t) = b, + by7 + bpr? ~g—;<-
> (2.9)
c(t) = cg + eyt + cot® «n%%
oX.
d(t) =d +le+d2T2 ~o
[0} ay )
\
a, = .104259 a; = -,160995 a- = ,076398
b, = .37021 by = -.44893 bs = .215512
> (2.10)
co = .01551 ¢, = -.003883 co = .003477
d, = .062320 d, = -,010020 ds = .007364J

The deviation in thrust angle defined by this system can be expressed
as follows:

AX = BAX + ®X , (2.11)

where

B = [a(t) Db(t) c(t) d(t)]. (2.12)

The quantity &X represents any disagreement between the commanded thrust
angle and that which actually exists,

The effect on end conditions of deviations in the thrust accelera-
tion vector is reflected by the weighting functions f; and g; shown in
equations (1.5) and (1.6). A review of the derivation of these equa-

tions in Reference 1 reveals the following relationships:

12




- f 3
Fo = - (/180)2 £ p_
and > (2.13)
Fs = - (n/lSO)Z% ¥y
s
where
fi
F, = s i=20,1, ... .
1
CH

Furthermore, all even ordered vectors are constant multiples of
Fz, and odd ordered vectors are constant multiples of F;. It follows
that all the weighting functions can be determined immediately from
either F, or F;. These two vectors represent the weighting functions
assuciated with the linear terms of Af/m and AX, respectively, and can
be determined from the solution to the following system:

X = AAX + Hy Af/m + Hp AX. (2.14)
The solution is
tn th
AR = U(ty) AX(ty) + f Fi AX dt + f Fo Af/m dt. (2.15)
to t:0

Substitution of the expression for AX shown in equation (2.11) into
equation (2.14) results in the following system:

AX = (A + HyB)AX + H, Af/m + Hy 8X

13



or
AX = A AX + H, Af/m + Hy 8%, (2.16)
where
A = A + HjB.

This expression is of identical form to that appearing in equation
(2.14). The solution can be expressed as follows:

tn tn
AR = T(to) AX(ty) + ¥/\ io Af/m dt + L/\ F, 8X dt. (2.17)

to tO

A comparison of U(ty) and ﬁ(to) for the mission under consideration
yields the following:

. 349481 1.25909 .170980 .491843
U(to) = (2.18)
-.008175 -,007129 -.005744 -.008092
and
_ . 045516 .033588 .017544 . 00857
U(to) = . (2.19)
-.007110 -,000262 -.003038 -.000534

The coefficients above were obtained for variables expressed in
the following units:

/%, Ny and Ar are expressed in kilometers,
/% and Ay are expressed in meters per second.

N8 is expressed in degrees.

14




Although the elements of ﬁ(to) are not small enough to be ignored,
they provide a good linear prediction of the effect of AX(ty) on the end
conditions. With this knowledge available, it should not be difficult
to determine a time function of second stage ignition to cancel these
effects., With this_in mind, primary consideration will be given to the
elements of ?o and F;. The elements of these two vectors are illustrated
in Figures 2.3 and 2.4 where they are compared with the corresponding
elements of Fy and F,. That the magnitude of the weighting functions
defined by equations (2.9) - (2.12) is apparent. A better indication
of the effect that 8X and Af/m might have on Ar and A5 is reflected in
the following values which have been determined.

tn lfll ‘i498 km/deg
f F dt = (2.20)
g 12
|l
tn 150' .4.135 km sec®/m
f dt = . (2.21)
p 2
£, lgo] .550 deg sec®/m

Although the effect of 38X represented by equation (2.20) might be
acceptable, it is apparent by equation (2.21) that the effect of varia-
tions in f/m is not. Even variations as small as .25 m/sec?® could
cause as much as 1 km in Ar. The magnitude of elements of F_ are func~
tions of the coefficients defined by_equations (2.10). By a?tering
these coefficients, the elements of F, can be altered. A procedure
to accomplish this will be outlined in the following section.

15
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III. PERTURBINRG THE POLYNOMIAL COEFFICIENTS

The weighting functions represented by the vectors Fo and fl were
determined from the following system of equations:

Fi(t) = T U(ty,t) Hy(t) (i =0, 1, ...), 3.1)

ﬁ(t,tl) = A(t) U(t,ty), (3.2)
where

U(ty,ty) = I (3.3)
and

A(t) = A(t) + Hy(t) B(t). (3.4)

The effect of changing the polynomial coefficients in Q(t) can be
investigated by defining another weighting function vector Fo(t) resulting
from another choice of coefficients defining a different function B(t)
where

ﬁo = f“o + AFO (3.5)

B=3B + AB. (3.6)

Then ﬁo is determined from the following relationships:

Fo(t) = T U(tp,t) Ho(t) (3.7)
Ut,ty) = A(t) U(t,ty) (3.8)
where
U(ty,t3) = I (3.9)
and
A(t) = A(t) + Hy(t) B(r). (3.10)
LMED. 19
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Defining the new variables in terms of the previous ones yields the
following definitions:

A(t) = A(t) + 24 (3.11)

U(t,ty) = U(t,ty) + AU(t,t1). (3.12)
From equations (3.10), (3.6), and (3.4), it can be seen that

DA = Hy/B. (3.13)
Substitution of equations (3.11) and (3.12) into equation (3.8) yields
f'}(t,tl) + AU(t,ty) = ACt) U(t,t1) + A(t) AU(t,ty) + AA(t) U(t,tq)

+ MA(t) AU(t,ty).
The relationship defined by equation (3.2) reduces this to
AU(t,t1) = A(t) AU(t,t1) + AACE) T(t,t1) + MA(t) AU(t,tp). (3.14)

Equations (3.3), (3.9), and (3.12) imply the following constraint on the
initial conditions:

AU(tl,tl) = 0. (3.15)
From equations (3.1), (3.5), and (3.12), it can be determined that
AFO(‘---l) =T AU(tnstl) HO(tl)’ (3016)

where AU(t,,t1) satisfies equation (3.14).

20




An approximate solution, Fg can be determined by linearizing equation
(3.14). Then

Fa(ty) = Fo(ty) +AFS(t,) (3.17)
and
AFG(t1) = T Ali(ty,t1) Hy(ty), (3.18)
where
AB(t,ty) = ACt) AU(t,t1) + AACE) T(t,ty) (3.19)
and
AU(ty,ty) = 0. (3.20)

The solution to equation (3.19) can immediately be determined:
th
AU(ty,t1) = U(ty,ty) AD(ty,ty) + f U(ty,t) M(t) U(t,ty) dt.
£
From equation (3.13) and (3.20), this can be reduced to
tn

AU(tp,ty) = f U(ty,t) Hy(t) AB(t) U(t,t;) de.
ty

Inserting this expression into equation (3.18) gives the following equation:

tn

AAFg(tl) = k/ﬂ T U(ty,t) Hy (£)AB(t) T(t,ty) Hy(t1) dt.
ty

21




Equation (3.1) reduces this to

ty

AFS(ty) = \jﬂ Fy(t) AB(t) U(t,t;) Hy(ty) dt. (3.21)

3]

AMB(t) can be expressed in terms of changes in the polynomial
coefficients as follows:

AB(t) = [a(t) ob(t) Ac(t)  ad(e)])
Da(t) = Dag + Day T + AasT®
(3.22)
Ab(t) = Abg + Aby T + AuoT?
Nc(t) = Deg + Doy T + AepT
Ad(t) = Ado + Adl'r + Adg'fz J .

Equations (3.17), (3.21), and (3.22) provide an approximation to the
vector F, expressed as a linear time-variable function of perturbation
in the polynomial gain coefficients. This expression has been evaluated
over a number of time points for the application being investigated. The
least squares criterion was applied to the function.

12
> [E5%¢es) + 258%2(ep)]. (3.23)
=

[
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In order to take advantage of an available computer program which could
handle only a restricted number of coefficients, Aa,, Ab,, Acy, and Ad,

were set equal to zero and the remaining eight coefficients were deter-~

mined to minimize expression (3.23) with the following results.

-~

hay = -.007333 Na> = ,046081
Oby = ,764653 Hbs = =,093713
(3.24)
Acy = 045045 Nes = -,007476
Ny = .077065 Adp = -.007011 ) .
This defines a new feedback system defined below:
X = BAX, (3.25)
where
B =B + AB. (3.26)

The elements of ﬁ(t) are compared in Figures 3.1 and 3.2, where they are
compared with the corresponding elements of B(t).

The use of the polynomial gains represented by B(t) resulted in the
end condition errors expressed by equation (2.17). Similarly, the follow-
ing expression is obtained for B(t):

tn tn
MR = 'ﬁ(to) AX(ty) + f F (t) Af/n dt + f '1:‘1(1:) BX dt. (3.27)
tg tg
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The reduction in the effect of Af/m on Ar and A9 as a result of
changing the gains from B(t) to B(t) is vividly illustrated in Figure
3.3 where the elements of Fo(t) are compared with the corresponding
elements of Fo(t) A comparison of the integrals of the absolute values
reflects the following reduction in upper bounds.

tn 1%, | .666 km secZ/m

f at = (3.28)
~ - 2

€ g, | .258 deg sec®/m

tn g | 4.135 km sec®/m

f _ dt = (3.29)

t Igol .550 deg sec®/m

The reduction in the effect of Af/m could be expected because this
was the criterion employed to determine the coefficient changes defined
in equations (3.24). However, these coefficient changes are also
expected to alter the effects of AX(t,) and AX. A comparison of the
effect of these variables by using B(%) instead of B(t) is reflected in
the following comparisons as well as in Figure 3.4 where the elements of
F.(t) are illustrated.

) .017670  .019729  .001184  .002432
U(to) = (3.30)
-.001861 =-.000221 =.001149  -.000349
) .045516  .033588  .017544  .009570
(e, = (3.31)
-.007110  -.000262 -.003038  =-.000534
!n | |E, | .311 km/deg
f " at = (3.32)
g1 .04
tO -
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%, [498 xm/deg
f dt = . (3.33)

t léll ’12
¢}

The weighting functions of this system could again be linearized
and further iterations performed; however, the results already obtained
are sufficient to demonstrate the effectiveness of this operation. The
additional improvement afforded by the inclusion of thrust acceleration
feedback will be investigated.

The expression for AR defined in equation (3.27) was derived for
the following function.

AX = B(t) XX + BX.
The effect of a feedback of Af/m would give the following expression:
X = B(t) M + e(t) Af/m + BX. (3.34)

The expression corresponding to equation (3.27) would then be

tn tn
MR = U(te) N f [F,(t) + e(t) Fi(t)] Af/m dt + f Fi(t) ®X dt.
% t
(3.35)
Choosing e(t) as a quadratic function of time gives
e(t) = ey +teyT + esT=. (3.36)
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ey .81 and ez can be determlned to minimize the weighted sum of squares

of fo + e(t) fl and g, + e(t) 1, simultaneously. This was carried out
for this example with the following results.

e, = -14.2412
e; = 9.8851 /. (3.37)
es> = - 1.4328

The effect of Af/m is determined by the elements of the vector

Fo(t) + e(t) Fy(t).

The integral of the absolute value of these functions is not significantly
smaller than that for F as shown below.

\
tn l% + e(t) £ .543 km sec®/m
frlereon,
t =
t ‘go + e(t) g, .190 deg secZ/m
0
?. (3.38)
tn ‘%o| .666 km secZ/m
i
: Igol .258 deg sec®/m
° J

Although the improvement reflected by the above comparison is slight,
a comparison of the functions themselves which appear in Figure 3.5
shows that each of the elements of Fo(t) + e(t) F,(t) changes sign
which tends to cancel the effect of any bias of Af/m. Since a bias in
Af/m is a likely occurrence, this will be considered sufficient justifica-
tion for including the feedback of Af/m.
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IV, CANCELLATION OF THE EFFECT OF INITIAL CONDITIONS

Although the effect of initial conditions on AR is not consider-

able, the linear portion is known at second stage ignition.

possible to define a time function to cancel this effect.

It is
Suppose the

thrust angle should be changed by an amount X (t). The expression for
MR would then include the following two terms in addition to others.

tnh
MR = ﬁ(to) AX(tg) + [ Fi(t) MXo(t) dt + ... .

to

Let Axb(t) be defined as follows:

DX (£) = =P(t) M™1(t,) U(ty) AX(t,).

Substitution into equation (4.1) gives

tn

MR = ﬁ(to) AX(t,) - f Fi(t) P(t) dt M-l(to) ﬁ(to) AX(tg).

%o

Equation (2.3) gives the following definition:

t

n
M(t,) = f F,(t) P(t) dt.

to

Substituting this into equation (4.3) gives

AR = T(ty) AX(ty) - T(ty) AX(tg) + ... ,

(4.1)

(4.2)

(4.3)

(4.4)
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and the effect of initial conditions represented by ﬁ(to) MX(ty) is
cancelled. The problem is reduced to determining a time function Ak(t)
to add to the commanded thrust angle deviation so that the actual thrust
angle will be changed by an amount AXy(t) after including the effect of
the feedback. This can be expressed as follows:

Mo (t) = B(t) AX(AX)) + Lk(t). (4.5)
Thus, 2Ak(t) can be written
Lk(t) = MXo(t) = B(t) AX(LXp). (4.6)

The linear expression for AX(AX,) is

t

MX(MXg) = k/j U(t,ty) Fy(tg) MXo(tg) dEy. .7

t

Substituting this expression into equation (4.6) and including the
expression for AX_ (t) defined in equation (4.3) gives the following
expression for Ak(t):

t ,
Lk(t) = [-P(t) + B(t) f U(t,ty) Fi(ty) P(ty) dtlJ M‘l(to) ﬁ(to) MX(t,).

to
(4.8)

This can be expressed as
Mk(t) = K(t) AX(t,), (4.9)

where

t
K(t) = [-P(t) + B(t) f U(t,ty) Fi(ty) P(t,) dtJ M (t,) ﬁ(to).(4.10)

to
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K(t) is a 1 x 4 matrix of time-variable elements which will be
fitted by some polynomial expressions. It will be convenient to use
the same degree polynomials as will be required to fit the standard
X with the feedback. Consequently, the time function required to
allow the state variables to be measured directly, rather than in
terms of differences, will be determined and fitted first. K(t) will
then be fitted to the same degree polynomials.

Except for the correction for initial conditions, the deviation in
X which is predicted by the guidance function is

OX = BAX + e(t) Af/m. (4.11)

This can be expressed as
X = ﬁx + e(t) £/m + [Xs - ﬁXS - e(t) f/ms]. (4.12)

Equivalently,
X = BX + e(t) f/m + k(t),

where k(t) is a polynomial in time. Since B(t) is composed of elements
which are quadratic time functions and the variables x and y are expected
to be at least quadratics, it appears that a function of at least fourth
degree might be required. Since it fits satisfactorily, a sixth-degree
polynomial is used in this example:

k(t) = ko + ka7 + kot® + k31> + ky1? + ks1° + kgT8l (4.13)

The following numerical values were determined

k., = =-2354.749911")
k, = ~2267.341539
ko = -738.009535
ks = -39,95716990 }- (4.14)
k, = 5.34562706
ks = -1.09387216
kg = .10090398
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These coefficients were determined by the method of least squares

with slight adjustments to ensure that AR = 0 for the standard trajec-
tory.

The effects of the initial conditions, similarly, were cancelled
by fitting the four time functions of K(t) defined in equation (4.9)
to sixth-degree polynomials of time. Slight adjustments in these
coefficients were also made to ensure the following condition:

t

n
JP Fi(t) R(e) ae = -Bice ), (4.15)

o

where ﬁ(t) is composed of functions fitted to approximate the elements
of K(t). The time function K(t) can then be defined as follows:

k() = k(r) + 2k(v), (4.16)

where
MR(t) = Lkg + Mkt + Lkot® + Lkt 4+ Mkatt + kgT® + LkgTS. (4.17)

These coefficients can be determined at second stage ignition by
the following matrix operation.

fks| = AR AX(t,). (4.18)

The values of the elements of AK which have been determined for
this application are shown in the next section where a complete defini-
tion of the initial and final conditions and the guidance function are
listed with the results obtained from actual integration,
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The guidance function derived in the preceding section

in the following

V. RESULTS AND CONCLUSIONS

expressions:

X = B(t) X(t) + e(t) £/m + K (t),

B(t) = [4(t) b)) &) d@)]

a(t) = &, + 817 + 8577
g(t) = So + ng + 3212
€(t) = € + 837 + €577
d(t) = d, + d;7 + dor®
e(t) = ep + 41T + e51%

k(t) = K(t) + ak(),

s resulted

(5.1)

k(t) = kg + ka7 + kot® + kst + ky1? + ksT° + ket®

Ak(t) = ko + Ok 1T + AkoT? + Ak + Ak, TE + AksTS + AkgTS,
(o] 1

where

and

aky
Ako
Ak
Hkg
Aks
ke

t -t
2
100

=AK AX(t ), X(ty) =

153,983 km

6435.878 km

2818.329 m/sec

988.358 m/sec
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The numerical values obtained for this example are as follows:

a, = .104259 a; = -.168328 ar = .122479
by = .37021 b, = .315723 b= .121797
g, = .01551 8, = .041162 €, = -.003999 (5.2)
d, = .062320 d, = .067045 do = .000353
eo = -14,2412 e, = 9.8851 e, = ~1,4328
k, = -2354.749911 )
k, = -2267.341539
k, = - 738.009535
ks = - 39.957169900 ? (5.3)
k, = 5.34562706
ks =  -1.09387216
kg = .10090398
. 160198 .249259  -.246918  -.043367]
-.072324 .150760 -.132564 -.021482
.229492 .008411 .152094 .043929
&K = |-.369459 .224627 -.376247 -.082579| x 1072,  (5.4)
.202657 -.075912 .180285 .042941
-. 048929 .021807 - 045447 -.010541
| 006095 -. 002447 .005513 .001300
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The above coefficients were derived for use with x and y measured
in kilometers, %X and y measured in meters per second, and f/m measured
in meters per second®. In addition, they were derived for the follow-
ing system of differential equations:

f/m sin X + ¥

tH
[

y = f/m cos X + §g’
where
.o = _}_{_
S
.o = X
o =T &
g r>
O 0 2
g=-—=, g,= 9.81 m/sec, r_ = 6,370 km.
r o o
£/m = —_B:78065 o5
1.3751 - .2088871 ’ 100 :

The following initial conditions existed for the standard trajectory:

x, = 153.98343 kn
yo =6435.8783 kn

% =2818.3294 m/sec

o
Yo = 988.35767 m/sec
t, = 146.815 sec.
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Cutoff was assumed to occur at the following velocity:
v, = 7792.5746 m/sec,

at which time the following values should exist for r. and 6.

T 6555.200 km

[

Oc 90°,.

Table 5.1 presents a sample of twelve different second stage
initial conditions caused by variations in first stage performance.
The initial conditions are measured as deviations from the standard.
Tables 5.2 and 5.3 show the resulting deviations in Ar and A9, respec-
tively. The burning time of these examples were compared with those
required for the corresponding calculus of variations solutioms.

Table 5.4 shows the additional propellant required for this guidance
function beyond that which was required by the calculus of variations
solution. Negative values are readily explained by the fact that
errors in end conditions resulted in a different mission. The effect
on burning time of errors in end conditions is readily determined from
the following equation derived in Reference 2.

t
n
At = =MAr - AN A8 + L/\ [Ao + Mo + Aogol X3+ ..., (5.5)
%
where
Ay = -.08734 sec/km

Az .8589 sec/deg.

For Example No. 13, with +1% F, W second stage perturbation, the follow-
ing errors were obtained:

JAN -.161 km

JaYS] .013 deg.
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From this, the following variation in burning time should occur. (Only
first order terms are considered.)

Nt = -(-.08734)(-.161) - .8589(.013) = -.0252 sec.

The flow rate for this case was W = 210 1b/sec. Thus, in order to
meet the end conditions indicated, additional propellant, AW, should
have been required. 1In this case,

M = ~5.3 1bs.

The end conditions attained by the guidance function should have
required 5.3 1bs of propellant less than that required by the calculus
of variations solution to reach the nominal end conditions. However,
Table 5.3 shows that the guidance function saved only 4 1lbs of propel-
lant, a net increase of 1.3 lbs more than the calculus of variations
solution would have required to fulfill the same end conditions
actually met by the guidance function. However, since the actual con-
cern is the amount of fuel required to reach cutoff conditions from
whatever cause, the comparison of fuel was made with respect to cal-
culus of variations solution to nominal end conditions.

In conclusion, it should be pointed out that the purpose of this
report is not to propose a guidance function but rather to demonstrate
several numerical methods on a rather intricate problem. These methods
are applicable to a wide variety of problems, and it is felt that the
results of this particular application demonstrate their effectiveness.
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Deviations in Initial Conditions

TABLE 5.1

Example First Stage : ,
No. Deviations b (km) | 2y (km) | Ok, m/sec | A9, m/sec
1 None 0 0 0 0
2 +5000 1bs - .93152 | -1,1623 | -30.2692 -22.78749
3 -5000 1bs .94444 1.1824 30.8335 23,36393
4 Engine #2 17.28599 5.5463 | - 4,6494 -58,34471
out at 100 sec
5 Tail Wind .10183 1.8180 2.7670 25.69483
6 Head Wind -.34235 | - ,4055 -5.3173 - 5.40216
7 Left Cross Wind -.10434 | - 1788 -1.5250 - 2.33100
8 Right Cross Wind .09092 .2155 1.4240 2,.87015
9 -1% W 4,76116 1.1588 48,5244 ~ 4,54684
10 +1% W -3.31692 | - .6959 | -39.7298 3.74070
11 +1% F 1.19032 1.9245 29.8569 29.73483
12 -1% F -1,22157 | -1.9050 | -30.7597 -29.22741
13 This example did not involve any first stage deviations. It
is the case where the actual thrust angle exceeded the angle
predicted by the guidance function by +1/2°, (&X = + 1/2°).
Since it is combined with other second stage perturbations,
it is listed with the first stage deviations,.
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TABLE 5.2

/r (meters)
PERTURBATIONS
2md geage .
None | -1%Z £, W | 17 £, W E"am"N le
1St stage °-
None 0 -26 -3 1
+5000 1bs 34 35 4 2
-5000 1bs 43 -11 64 3
Engine #2 Out
at 100 sec. 6 69 28 4
Tail Wind 8 -28 15 5
Head Wind 0 -20 -8 6
Left Cross Wind 0 -24 -5 7
Right Cross Wind 1 -28 0 8
-1% W 70 2 102 9
H% W 37 44 2 10
+17 £ 50 =7 73 11
-1% £ 44 49 10 12
BX = +1/2° (2094 Stage)|-154 -177 -161 13
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TABLE 5.3

N9 (degrees)

PERTURBATIONS
2nd Stage None | -1% £, W | +1% f, W Example

15t Stage No.
None .000 -.014 .020 1
+5000 1bs .000 | -.015 .021 2
-5000 1bs .002 -.014 .018 3
Frgine fzcgﬁssat 000 | -.014 .021 4
Tail Wind .002 -.014 .021 5
Head Wind .000 -.014 .020 6
Left Cross Wind .000 | -.014 .020 7
Right Cross Wind .000 -.014 .019 8
-1% W .000 -.014 .016 9
+1% W -.001 -.017 .021 10
+17 £ .002 -.013 .019 11
-1% £ .001 -.014 .021 12
5X = +1/2° (2™d Stage) |-.007 -.020 .013 13




TABLE 5.4

/M (pounds)
PERTURBATIONS
2nd giace
15t Stage None ([-i% £, W | +1% £, W Ex;‘;‘ple

None 0 4 -1 1
+5000 1bs 8 8 8 2
-5000 1bs 7 14 2 3

Engine #2 Out
at 100 sec 9 12 / 4
Tail Wind 6 14 1 5
Head Wind 1 4 0 6
Left Cross Wind 0 4 -1 7
Right Cross Wind 0 5 -2 8
-1% W 3 8 0 9
+1% W 2 5 0 10
+1% £ 11 19 5 11
-1% £ 12 12 14 12
85X = 1/2° (24 Stage) -1 4 -4 13
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